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AhslraeL The heat capacities of 4He and 'He a t o m  adsorbed in porous highailica 
zeolites having channels about 5.5A in diameter have been measured below 6K. In 
neither atom is the expected quantum degeneracy detected. I n  onedimensional channels, 
in which the direct pmitional =change or atoms is prohibited, the heat capacity depends 
linearly on temperature, T, as C = AT. This result can be understood by the tunnelling 
two-level system model for glases or amorphous solids at very low temperatures. The 
large zero-point motion of the helium atom is reflected in the enormous value of the 
coefficient A, and in the wider temperature range of the linear term than in glassef 
In threedimensional channels. the heat capacity of helium atoms shows a shoulder 
around 2K lor lower atomic concenuations. Ihe result below 2K is reproduced by a 
consideration of discrete energy levels enhanced in the crossing space of channels. For 
higher concentrations the heat capacity shows a linear temperature dependence, which 
can be understood using the same picture as in the case of the onedimensional system. 

1. Introduction 

In recent years, investigation of quantum fluids such as 4He and 3He in certain 
restricted geometries has been a fundamental problem in the study of possible 
quantum degeneracy. In most experimental work carried out to date, the restriction 
has been performed by the use of substrates such as Vycor glass [1-4], grafoil [SI, 
zeolite [6-91, and so on. In the case of zeolite and Vycor glass, the average pore 
size ranges from lOA to 104A The restriction in these substrates is not so severe as 
to preclude the positional exchange of any two atoms in space, and various evidence 
relating to quantum degeneracy has been reported. 

However, it is interesting and important to see whether quantum degeneracy can 
occur in a more restricted space, where atoms cannot directly exchange their position. 
The superfluid transition of 4He is suggested on theoretical grounds to occur in a 
zeolite, which has small channels with a size comparable to a helium atom [10-12]. 
Experimentally, the Fermi degeneracy of 3He in onedimensional channels of size 
5.5A has been studied, where the susceptibility of 3He obeys the Curie law down 
to 0.1K without giving the Pauli paramagnetic behaviour that characterizes Fermi 
statistics. In other zeolites, where the positional exchange of 3He atoms may be 
possible, the susceptibility shows the Pauli paramagnetic behaviour, suggesting the 
occurrence of the Fermi degeneracy [U]. However, the thermal behaviour of 3He 
in such a severely restricted geometry is not clear, nor is the quantum degeneracy 
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of 4He. In this paper, we study the thermal behaviour of these atoms in one  and 
three-dimensional channels using high-silica zeolites. The advantage of using these 
zeolites is their electrical neutrality, which is an inevitable experimental requirement, 
as will be emphasized in section 2. Using various zeolites, having a larger pore sue 
and cations on the framework, a series of pioneer works on quantum particles has 
been carried out by Wda,  Watanabe and co-workers. Their results will be given in 
section 3, in comparison with our present results. 

2. Experimental techniques 

For the present study of helium, it is necessary to prepare restricted channels 
electrically free from cations or anions on their framework helium atoms in channels 
with some electric polarization are likely to be bound or trapped around them [8,9]. 
Here, we use two high-silica zeolites: Na,AI,Si,-,O, (hereafter called ZSM-23 
(n = 0.738)) with lattice parameters a = 5.2% b = 21.54 c = 11.1A for 
the unit cell 1141, and NanAI,S&-nO,m (ZSM-S (R = 0.101)) with a = 2 0 . 1 4  
b = 19.9% c = 13.4A [15-17]. The chaMel structure of these zeolites is shown in 
figure 1. The zeolite ZSM-D has onedimensional channels parallel to [lo01 enclosed 
by a ten-membered atomic ring of size 5.3A x 5.6& The porosity is 0.Zlcm3g-'. 
The zeolite ZSM-5, however, has a three-dimensional network of channels enclosed 
with ten-membered atoms. Straight channels parallel to [OlO] have openings of size 
5.4Ax5.6A and zigzag ChaMek along [lo01 have openings ofsize 5.1Ax5.7& The 
porosity of ZSM.5 is 0.32cm3 g-'. In ZSM-23, the direct positional exchange of helium 
atoms is prohibited within a channel. In ZSM-5, however, the exchange is possible 
through three-dimensional paths. Another profitable feature of these zeolites is the 
high value of the SiO,/AI,O, ratio, which is a measure of electrical neutrality on the 
framework; the ratio for ZSM-23 is 63 and that for ZSM-5 is 1900. Zeolites that have 
a ratio larger than 5 - 10 are usually referred to as 'high-silica' zeolites. 

(1) ZSM-23 a (b) ZSM-5 ('4 ZSM-23 (a-projation) 

Figure 1. Channel strucmre of ( a )  X M . ~  and (b) ZSM-S. The broken l i n s  indicate the 
unit cell employed in this paper. (c) The framework of ZEM.23 (a projection). 

The high-silica zeolites used here are powdered specimens with an average size 
of about lpm. Dehydration of these specimens is carried out by keeping them 
at a temperature around 500 OC for live hours. After dehydration, each specimen is 

acked in a copper cell for the heat capacity measuremenS. The sample cell is set to a 
!He cryostat, and connected to a gas-handhg system through a small capillary for the 
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introduction of He gas, as shown in figure 2. Before the introduction of the sample 
gas, final dehydration is performed at 220 "C for several hours in a high-vacuum 
atmosphere. A sample of 3He or 4He gas is then let into the cell and adsorbed in the 
temperature range between 77 K and 4.2K After annealing the sample system up to 
a temperature above 5K and cooling to 0.8K, the measurement of heat capacities of 
He adsorbed in high-silica zeolites is performed using the conventional adiabatic DC 
pulse method until about 6K, at which temperature the He atoms hegin to escape 
from the channels in the zeolite. 

I 
(a) 

adiabatic vacuum 

thermal anchor 

sample gas inlet 
thermometer capillary tube for 

lq.'He (-1.2K by pumping) 

(b) 

+- gas canlaincr 

sample cell 

Figure 2. Schematic diagram of the ayasfa1 (a) and the gas-handling system (6). 
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3. Results and Discussion 

3.1. Aukoption kotherms of the zeolites 

First, we estimate the effective porosity volume in zeolites by the maximum number 
of helium atoms to be contained, assuming that helium atoms are free particles with 
a diameter of about 3A and assuming that the surfaces of the channels are flat. In 
the case of onedimensional channels in ZSM.23, nearly 3.5 atoms are allowed to be 
contained in a unit cell, as shown in figure 3(a)-1. The restricted space in ZSMJ 
is realized by the repetition of cages with four open channels, as in figures 3(b) 
and l(b). The maximum number of atoms is expected to be about 11 for one cage 
with a structure as illustrated in the figure. 

Flgvm 3. Schematic illustration for fully filled He atoms. (a) 1: hard-sphere panicles 
fully packed in ZSM-U 2 apecled average anangemen; of He atoms in ZSM.23 at N.. 
(6) Expected average arrangement of He atoms in ZSM.~ at N,. ?he broken lines indicate 
a cage with four open channels Four cages arc included in a unit cell. 

In order to check whether the maximum volume mentioned above is really the 
case, we checked the dependence of the isothermal pressure on the concentration of 
adsorbate gases. A known amount of gas was prepared in the space A (see figure 2(b)) 
with a volume of 721x1~. After the gas was introduced into the sample cell through 
the valve B, the gas pressure was measured at room temperature with a Pirani gauge, 
once sufficient time had elapsed for the pressure to reach equilibrium. It is expected 
that, for a small amount of gas, most molecules will be adsorbed within the channels 
and the pressure will be small. In accordance with the increase of the amount of gas 
to fill the channels of the zeolite, at a certain concentration the pressure is expected 
to increase abruptly. 

The experimental results are shown in figures 4(a) and (b) for Z S M ~  and ZSM-5, 
respectively. The data for 4He and 3He were taken at 4 . 2 9  and those for Ne at 27K 
The data for N,, as in figure 4(b), were obtained at 77K In all cases, the pressure 
maintains a nearly constant value until the gas concentration reaches a critical value, 



Heat capaciIies of He in ID and 3D channels 

(a) 
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Figure 4. Adsorption isotherms of 3He, 'He (at 4.2K), Ne (at 27K) and N,. (at 77K) 
in (a) ZSM.23 and ( b )  2SM.S. The full C U N ~ S  are Lo guide the eye. 

N,, above which the pressure increases abruptly. For concentrations lower than N,, 
the pressure is small compared to the background pressure in the gas-handling system. 
In this concentration region, the value of the pressure for 4He and 3He is nearly the 
same, and smaller than that of N, by one order of magnitude. This is due to the 
difference of the background pressure at 4.2K and 77K. 

The critical value, N,, for He is about two times larger than that for Nz, and the 
critical value for 4He is slightly larger than that for 3He. In the case of Z S M - ~ ,  the 
critical value for 4He is determined, from figure 4, to be 1.6 atoms per unit cell. This 
concentration gives an average interatomic distance of 6.5A in channels. Similarly, in 
the case of ZSM-5, the critical value for 4He is determined to be 44 atoms per unit $ell 
(11 atoms per cage). The value of N. for N, is about 20 molecules per unit cell, which 
is consistent with the value reported in [lq. The observed value of N,  = 1.6 atoms 
per unit cell for 4He, for Z S M - ~ ~  with one-dimensional channels, is rather smaller 
than the maximum value of 35 atoms per unit cell estimated geometrically at the 
beginning of this section. This may be responsible for the enhanced zero-point motion 
of particles in narrow channels. We can demonstrate the effect of the zero-point 
motion of helium atoms by substituting them with neon atoms, which are more hard 
sphere like, are without quantum effects and are very closely packed, giving much of 
the value of N,, as in figure 4. 

Hereinafter, we define the concentration n of helium atoms in the zeolite to be 
the ratio of the number, N, of adsorbed atoms to the critical value N,: n = N / N ,  

3.2. He in ZSM-23 (one-dimensional system) 
Measurements of heat capacity have been camed out for various concentrations of 
3He and We adsorbed in Z S M - ~ .  The results for 4He are shown in figure 5(a). 
The heat capacities of the zeolite itself are subtracted here. The dotted curve shows 
the heat capacity for liquid 4He. In the present data, no trace of the superfluid 
transition can be seen. Since the surface area of ZSM.23 is not negligible, it is 
expected that the atoms of helium are likely to become adsorbed on the surface 
of the specimen and form a two-dimensional solid at low temperatures. The low- 
temperature heat capacities of the two-dimensional solids of 4He and 3He are known 
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’He in ZSM-23 i 

Pigum 5. (e) Molar heat capacities of 4He in ZSM.~). (a) Plot of C/T against T. The 
data points 0. A, 0 and m m p o n d  to the amount of adsorbed ‘He in the zeolite (lg), 
m p t i v e l y  058, 0.88. 134 and 1Jlmmol. 

to show a b(0,)T2 dependence, where 0, is the characteristic two-dimensional 
Debye temperature. In order to check the contribution from the surface, in figure S(b) 
we plot the data of the heat capacity C of 4He adsorbed in Z S M - ~ ~  for C / T  against 
T .  The data can be reproduced by C = 4T + bT2 above 1.3K In the case of 
4He, the coefficient Q decreases With increasing concentration, and the coefficient 
b is nearly constant. The Tz contribution may be understood as being due to the 
two-dimensional 4He solid adsorbed on the surface of the specimen, as mentioned 
above. 

In order to extract the intrinsic thermal behaviour of helium in the one- 
dimensional channel, we subtract the contribution bT2. From this value of b, we can 
estimate the number of helium atoms on the surface using the known value of the two- 
dimensional Debye temperatures, 38K and 32 K for 3He and 4He, respectively, which 
are the most profitable values for the two-dimensional helium solid [18]. Figure 6(a) 
shows the heat capacity of 4He without the contribution from b p ,  where the value 
of the heat capacity is renormalized for the helium atoms in the onedimensional 
channels. It should be noted here that the heat capacity reveals the characteristic 
linear dependence C = A(n)T above 1.3K 

In the case of 3He, similar results are obtained by subtracting the contribution 
bT2, as shown in figure 6(b). Below 1.3K, heat capacities become smaller than 
A(n)T. The coefficient A ( n )  decreases with increasing concentration n for both 
3He and 4He, as shown in figure 7. 

Here, we consider the linear dependence of the heat capacity. There are two 
possible explanations for the origin of the linear contribution of A(n)T in the o n e  
dimensional channels. The first is due to the one-dimensionality of solid helium, and 
the second is due to the semi-quantum liquid state 1191. 

For the one-dimensional solid model, at low temperatures C is expressed as 

C = frr2R(T/Bld) (1) 

where R is the gas constant and Old is the Debye temperature for the onedimensional 
solid. When we equate (1) to the observed value of A(n)T, the Debye temperature 
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(a) ( b )  

5 1 keinZSM-23 / 

5 10 

'He in ZSM-23 

fK) T 1K) 

Figure 6. Heat capacities of He in ZSM-23 after subtraetion of the surface effect. (a) 
4He. n = 0.u) (o), 029 (A), 0.49 @) and 0.64 (a). The broken c u m  show the heat 
capacity of liquid 4He. ( b )  'He. n = 0.10 (o), 0.16 (e), 027 (A) and 0.69 (0). The 
broken c u m  shows the heat capacity of liquid )He. The full lines are to guide the eye. 

He in ZSM-23 
0 'Hc 

0 

I1 

Figure 7. Concentmion dependence of the mffiaent A(n) for 'He ( 0 )  and 'He (a) 
in 7sM-n. 

Old can be expressed in terms of the observed value of A( n): 

Old = 7r2R/3A(n). (2) 

The value of e,, for 4He varies considerably, from 28K to 489 as the concentration 
changes from n = 0.20 to n = 0.64. For 3He, Old ranges between 28K and 102K 
for the concentration range between n = 0.10 and n = 0.69. Generally, the Debye 
temperature should be independent of the concentration or cluster size, except in 
the case where the softening of phonons has an effect [20]. Therefore, the present 
analysis of the one-dimensional solid model is not reasonable. 

A second possible explanation for the linear heat capacity is the effect of the 
irregular configuration of helium atoms in the channels. It is well known that the 
heat capacity of an irregular system or glassy state depends linearly on T at low 
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temperatures. The thermal properties of glasses were explained in the t u ~ e l l i n g  
two-level system by Anderson and co-workers [21] and Phillips [22]. In this model, 
the atoms can sit around individual local minima formed by their own random 
configuration, and transfer among the miniia by tunnelling. Single tunnelling occurs 
between neighbouring asymmetric wells. When the energy difference of the two wells 
is E, the free energy for single tunnelling is expressed as 

f ( ~ )  = - k B ~ l o g ( 1  + e-a/ksT) (3) 

where kB is the Boltzmann constant The free energy for independent tunnelling 
among all the possible potential levels is 

where Y is the density of states. h u m i n g  that Y does not depend on the energy 
difference in the glassy state at low temperatures [21,22], the heat capacity becomes 

C = i&RT 2 AT. (5) 

In real glass materials, the linear term is observed below 1 K (i.e. T/BD < 0.01), and 
amounts to roughly IOeST - 10-4T Jmol-' K-', where 0, is the Debye temperature 

There are a few points to stress about our present results when compared with 
the case for glasses. The first point is that the absolute value of the coefficient 
A is 4-5 orders of magnitude larger than that for glasses. Another point is that 
the temperature range over which the heat capacity preserves the linear dependence 
is much wider for helium than for glasses. The linearity is observed below 4K 
(T/B, < 0.13) in helium and below 1K (T/BD < 0.01) in glasses. The coelficient 
A(n) is related to the density of states, v, as described in (5). In the above model, Y 
is assumed to be independent of energy at low temperatures [ZOJ and to be a function 
of z / U ,  where U is the potential barrier and z is the number of vacant neighbouring 
positions [19]. However, the value of A should depend on the probability of the 
tunnelling, though this is not explicitly expressed in the above model for the heat 
capacity. The probability in helium is much larger than in glasses, because the 
potential bamer of helium is U U 10K and that of glasses is U U 1@K. Moreover 
the tunnelling is assisted by strong zero-point motion in the case of helium. These 
characteristic features of helium are mainly responsible for the difference in the 
low-temperature heat capacities between helium and glasses. 

In the case of helium, as shown in table 1, the coefficient A seems to depend 
upon the topological configuration of the helium atoms: the values for helium in 
zeolites are smaller than those for liquid helium under pressure 1191. The values of 
A( n) for the present onedimensional channel give the smallest values in other cases. 
The Y zeolite has a three-dimensional channel structure whose channel and cage size 
are nearly SA and 13A respectively. The L zeolite has a onedimensional channel 
structure whose size is almost the same as for the Y zeolite. In the table we can see 
that A( n) decreases as the dimensionality and the pore size in the zeolites decreases. 

Here, we consider the concentration dependence of A(n). The value of A(n) 
decreases with increasing concentration, as shown in figure 7, though the decrease is 

~ 3 1 .  
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able  1. A comparison of A(n) and the temperature range (T/@D) obtained for weral 
systems. 

%ten Pore size (A) d(n) (Jmol-I K-') Rmperature range (K) (T/eD)t Ref. 

2.3 1.9 .-. 9.2 (0.06 .-. 0.3) [I91 Bulk OHe - 
Bulk 'He - 3.9 0.8 I 1.9 (0.M n 0.14) 1191 

(61 

191 

'He in Na-Y 

4He, )He in K-L 
zeolite 8, 13 (30) 2.2 - 
mli le 7.4, 13 (ID) -1.0 - 

4He in ZSM.23 55 (ID) 0.57 I 0.97 1.3 .-. 4 (0.04 .-. 0.13) t 
'He in ZSM.Z~ 5.5 (1D) 0.27 N 0.97 1.3 .-. 4 (0.04 I 0.13) $ 
Glass Si02 - 
Glass GeR - 6.0 x 10-I <1 (< 0.01) [SI 

1.6 x lo-' <1 (< 0.01) [ S I  
5.5 x 10-5 <I (< 0.01) [U1 Glass Se - 

t The Debye temperalure for helium in zeolite and glass b assumed to be about 30K and loOK, 
respectively. 
i Present work. 

not systematic. We can qualitatively understand this decrease in A(n) as being due 
to the reduction in the number of vacant sites with increasing concentration. 

Furthermore, we discuss here the difference between the present linear 
dependence of the heat capacity in a restricted geometry, and that of liquid 
helium under pressure, as obtained by Andreev [19]. In the latter case, the linear 
dependence was obtained under a pressure of 25atm and in a temperature region 
0.06@, < T < 0.30D, where 0, is the Debye temperature of 4He in the liquid state. 
In other words, it is the effect of pressure that restricts the positional exchange of 
helium atoms and gives a linear heat capacity. Contrary to this case, our present 
results reveal that a restriction of topological space, in which the positional exchange 
of the particles is impossible, also gives semi-quantum behaviour, such as a linear 
heat capacity. 

In order to demonstrate the semi-quantum behaviour as obsemd in the present 
system, we measured the heat capacity of neon adsorbed in the same zeolite. Our 
preliminary results show no evidence of a linear dependence of the heat capacity 
above 2K. We can understand this by taking into consideration that the quantum 
parameter is much smaller for neon than helium. The results are to be given 
elsewhere. 

In the above model, we have treated helium atoms in the present high-silica zeolite 
as quantum particles without being trapped on thk framework atoms of the channels. 
However, is this really the case? There are several theoretical works relating to this 
problem. The potential of a particle restricted in a cylindrical micropore is estimated 
as a function of the diameter of the cylinder, which gives its minimum at the centre 
of the cylinder when the diameter of the cylinder is smaller than twice the particle 
size [a]. On the other hand, the interaction between particles in the comparable 
size of channels is found to be much weaker than in free space [25]. In the real m e  
of the Y and L zeolites, which have a larger pore size than the present case and 
have cations on the inside wall, a certain number of adsorbed atoms are shown to be 
trapped on the cations, and the rest behave like a semi-quantum liquid [6,9]. 

We now return to the present resulu at the lowest temperatures (figure 6). Below 
1.3K the heat capacity does not depend linearly on temperature. There is no heat 
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capacity peak for a phase transition such as solidification or the superfluid transition. 
Some state different to the semi-quantum liquid state is expected below 1.3K. For 
further investigation of this problem, experiments at much lower temperatures are 
required. 

3.3. He in ZSM-S (three-dimensional ystem) 

Heat capacities have been observed for various concentrations of 3He and 4He 
adsorbed in ZSM-5 which has three-dimensional channels. The results for 4He are 
shown in figure 8(u) for the lower-concentration region, and in figure 8(b) for the 
higher-concentration region. Figure 9 shows the results for 3He. In these figures, 
the contribution of the a t o m  trapped on the surface is considered to be negligible, 
because the ratio of the number of a t o m  on the surface to the number adsorbed 
within the pores of ZSMJ is about one-tenth of the ratio for ZSM-U. The present 
results are different to the heat capacities of liquid helium or solid helium. The 
heat capacities of both 4He and 3He have qualitatively the same dependence on 
temperature and concenaation; we cannot distinguish between the Bose and Fermi 
system in these figures. 

We now discuss the temperature dependence of the heat capacity taking into 
consideration the atomic concentration. 

8 ,  I '  I 

;[ 2 

0 

4 s D 

8 
U P  

0 1 2 3 4 5 6  

7 (K) T (K) 
Figure 8. Heat capcil ia of 'He in ?.$MI. (a) Lowconcatration region: n = 0.07 (o), 
0.13 (A) and 0.23 (U). The full CUNC show the heat capacity calculated using the model 
for a free particle mentioned in the tcxr (a) Highconcenlration region: n = 0.34 (o), 
0.45 (o), 0.68 (A) and 066 (0). The broken lines are to guide the eye. 

First, the heat capacities of 4He and 3He for the low-concentration region 
(n 5 0.3) increase abruptly with increasing temperature up to about 2 K  as in 
figures 8(u) and 9, respectively. It should be noted that in this temperature region 
the absolute values of the respective heat capacities of 4He and 3He merge on the 
respective common curve. The characteristic shoulder appears around 2K. Above 
2K, heat capacities deviate from the common curve depending on the concentration. 

As shown in figure 8(b), the heat capacities of 4He for the highancentration 
region decrease with increasing conoenuation. In this concentration region, the heat 
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1 2 3 4 5 6  

T (K) 
Figure 9. Heat capacities of 3He in BMA R = 0.W (e), 0.12 (0). 0.23 (A), 0.45 (0) 
and 0.68 (0). The full culve shows the heat capacity ealculated using the model of a 
free pMicle mentioned in the text. The broken lines are to guide the eye. 

capacity does not exhibit the clear shoulder observed around 2K, and seems to give 
a linear dependence on temperature for la 0.45. The same thermal behaviour can 
be seen in the case of 3He, as shown in figure 9. 

Before we discuss the absolute value of the heat capacity, a few remarks should 
be made concerning the possible position of a helium atom in the narrow channels 
of ZSMJ. A pore of ZSMJ can be approximated as consisting of two parts: channel 
and cage. The cage, which is the space of intersection of zigzag and straight channels 
as shown in figure I@), is slightly larger than the channel itself. When a particle 
is conlined in a narrow space, the kinetic energy of the particle increases due to 
quantum effects. The relation between the confined space size, Az, and the increase 
of momentum, Ap, is given roughly by AxAp 2 h. Thus the increase in kinetic 
energy, A E, is roughly 

Substituting the mass of the 4He atom in (6), AE/k, is nearly equal to 60K for 
Az = 284 and 9.5K for Az = 5% which respectively correspond to the effective 
size of the channel and the cage in ZSMJ, as will be mentioned below. This implies 
that the helium atom is more likely to exist in the cage than in the channel, for low 
concentrations at low temperatures. 

We will now estimate the energy levels of a helium atom in the cage, assuming 
that the atom behaves as a free particle. The real space of the cage is too complex 
to let us calculate the energy levels. However, if we suppose that the cage is a small 
cube with side Am, we can calculate the energy levels En of the free particle as 

where m is the mass of the particle and ni(i = z, y, z )  are arbitrary natural numbers. 
The energy levels depend upon the cube size Az and mass m. The heat capacity 
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calculated by this model fits well the observed data for 4He with m = 4amu and 
A+ N 58. in the low-concentration region (n 5 0.3) below ZK, and for 3He with 
m = 3amu and A+ N 5.28. (see the full curves in figures 8(a) and 9). Since the 
difference among energy levels in 'He is larger and more discrete than in 4He, the 
heat capacity of 'He is smaller than that of 4He at the same temperature. 

This model is somewhat oversimplified. However, it suggests that helium a t o m  
adsorbed in ZSM-S have enhanced discrete energy levels in the restricted space of the 
pore at temperatures below 2K. 

We now consider the effective sue, A+, of the cage mentioned above. It has been 
reported that the cage can contain at most about eight nitrogen molecules [17]. The 
cage must therefore have a space of at least SA to contain eight nitrogen molecules. 
If we take the diameter of the He atom to be of the order of 3& an effective value 
of Ax N 58.  may be reasonable. In other words, more than eight helium atoms (in 
fact, about 11) are contained in the cage. The experiment show that helium atoms 
behave as free particles until the atomic concentration comes to n N 0.3, which 
corresponds to three atoms per cage. In other words, when a cage includes more 
than three atoms, each atom becomes affected by interatomic interactions and cannot 
behave like a free particle. 

Tbrning back to the experimental results above 2K, in figure 8(a) we can see 
something l i e  a plateau in the heat capacity, which gives a value of about R / 2  
for low 4He concentrations. This implies that 4He atoms go through freely in the 
onedimensional or zigzag channels leaving the cage. For temperatures higher than 
4% the heat capacity increases rather steeply. This is considered to be due to the 
possible degassing effect at higher temperatures. In the case of the heat capacity 
of 3He, for the corresponding concentration, there seem to be a trace of the same 
plateau around 3 K, as in figure 9. 

On the other hand, in the heat capacity for the higher-concentration region 
(n 2 0.3) the characteristic shoulder around 2 K  disappears, and it comes to depend 
linearly on temperature with increasing concentration (figure 8(b)). This temperature 
dependence of the heat capacity looks similar to the case of helium atoms adsorbed 
in the onedimensional channel (ZSM.23). In this concentration range, helium atoms 
are supposed to be so close to each other as to behave l i e  a semi-quantum liquid 
in the three-dimensional channels. The coefficient of the linear term A(n)  for the 
present case is of the same order as that for the onedimensional channel (ZSM-2.3). 
This is relevant to the comparable size of pore between ZSM-23 and ZSMJ. 

4. Conclusion 

In this study, the thermal behaviour and the quantum effects of 4He and 3He in a 
severely restricted geometry have been investigated. The heat capacities of helium 
atoms in the one- and three-dimensional channels of high-silica zeolites have been 
observed below 6K. The results are concluded as follow.. 

(i) In one-dimensional channels in ZSM-23 the heat capacity depends linearly on 
temperature as C = A(n)T.  The coefficient A ( n )  decreases monotonically as 
the concentration increases. This result can be interpreted by the semi-quantum 
liquid model on the basis of a tunnelling two-level system, whose mechanism has 
been introduced to explain the thermal behaviour of glasses or amorphous solids 
at very low temperatures. We have found that the coefficient A ( n )  of the present 
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result is much larger than that in glasses, and the temperature range where the 
heat capacity keeps the h e a r  dependence is much wider for helium than for glasses. 
These are responsible for the larger zero-point motion of helium. Although the linear 
dependence is observed for helium atoms under pressure, or in a space where the 
direct positional exchange of atoms is possible, the present work has revealed, for 
the first time, that the linear dependence is realized for a one-dimensional system in 
which positional exchange is prohibited 

(U) In the threedimensional system in ZSM-5, which is structurally approximated 
to consist of channels and cages, the observed heat capacity for the lower helium 
concentration n 5 0.3 shows a characteristic hump around 2 K. The results below 2K 
are reproduced by a consideration of the discrete energy levels of helium enhanced 
in the cage. For higher concentrations, the heat capacity comes to show the linear 
dependence on temperature, and can no longer be explained hy the above model, 
This temperature dependence can be understood using the same picture of a semi- 
quantum liquid as in the case of ZSM-23. 

(i) Quantum degeneracy, such as the superfluidity of 4He and the Fermi 
degeneracy of 3He, is expected for 4He (boson) and 3He (fermion) but does not 
occur in the present restricted geometry. Concerning this problem, it is pointed out 
that quantum degeneracy is suggested, both theoretically [10-12] and experimentally 
[13], to occur in three-dimensional systems. It is also suggested, by Giamarchi and 
Schulz [26], that a superfluid transition of a one-dimensional boson gas may be 
possible. Our results do not completely deny the possibility of quantum degeneracy 
in the restricted geometries at lower temperatures. 

In order to make clear the contrast in thermal behaviour of the quantum effect 
of helium in the present system, we are presently investigating the heat capacity of 
classical particles, e.g. neon, in the same zeolites. It is expected that neon atoms 
adsorbed in high-silica zeolites show something like solidification at low temperatures 
because of the larger van der Waals interactions. Our preliminary results are mostly 
explained by the successful models of solids, the Debye model and the Einstein model, 
giving a distinct difference from the case of helium. More detailed data concerning 
neon adsorbed in high-silica zeolites will be published elsewhere. 
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